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Abstract Based on the results of singularity confinement we derive bilinear expressions for 
the discrete Painlev6 equations. In these cases where a bilinear expression is not sufficient we 
obtain trilinear or higher multilinear expressions. We show that the bilinear approach provides 
a natural framework for the derivation of B3cUund and Schlesinger transforms for the discrete 
Painlev6 equations. 

1. Introduction 

The Hirota bilinear formalism [l] has played a crucial role in the study of integrable 
nonlinear systems. Perfectly suitable for the derivation of multisoliton solutions, this 
approach has often been used for the investigation of the integrable (or not) character 
of evolution equations. Curiously, the bilinear formalism has not been particularly popular 
for the study of these equations that are the archetypes of integrable equations: the six 
transcendental equations of Painlev6 and Gambier [Z]. This is all the more curious since 
the solutions of these equations are meromorphic in the complex plane of the independent 
variable and should thus possess simple expressions in terms of ratios of entire functions. 
(This is precisely what the Hirota formalism does: introducing a dependent-variable 
transformation it allows the latter to be expressed in terms of the r-functions which are 
assumed to be entire.) As a matter of fact this property of the Painlev6 transcendents 
was pointed out by Painlev6 himself [3]. However, the systematic application of the 
bilinear approach to the Painlev6 equations had to wait till very recently: only in 1992 
did Hietarinta and Kruskal [4] give the standard bilinear forms of the first five Painlev6 
transcendents (although this approach was initiated in the work of Okamoto, dating back to 
1981 [5]). The causes of this neglect are not clear. Just as in the multidimensional case, 
the bilinear approach for PainlevC equations does lead to the systematic construction of 
particular solutions [6]. Moreover, the bilinear formalism provides a natural framework for 
the derivation of B~acklund transforms [7]. These reasons should have encouraged a more 
active study of the bilinear Painlev6 equations. 

This paper does not focus on the bilinear continuous Painlev6 equations but rather on 
their most interesting, newly discovered, next of kin: the discrete Painlev6 equations. The 
latter are integrable difference equations which, at the continuous limit, go over to the 
continuous Painlev6. The two share many common features [SI. One of these common 
properties is the fact that they both possess bilinear expressions. Discrete Painlev6 (dPS) 
equations have been recently identified in field theoretical models 191, although the very 
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first instances of their occurrence are appreciably older [lo]. A systematic approach for 
their derivation has been presented in [ 111 in the framework of the singularity confinment 
conjecture [12]. This integrability detector for discrete systems is based on the fact that 
the singularities which appear spontaneously in integrable discrete systems disappear after 
a few iterations. Singularity confinement is the discrete analogue of the Painlev6 property 
for continuous systems (absence of movable critical singularities) [13]. Thus the use of  
singularity confinement for the derivation of the dPS establishes a perfect analogy with the 
continuous case and the Painlevaambier derivation of the continuous Painlev.5 equations. 
As we shall see in what follows, the singularity structure will be a most valuable guide 
for the bilinearization of the dPs. Section 2 is devoted to precisely this question, while the 
rest of the paper deals systematically with the derivation of the bilinear expressions for the 
known dPS. 

2. Tawfunctions from singolarity confinement 

Before embarking upon the construction of the bilinear forms of dPS, let us examine the 
singularity shcture  of some simple cases and try to put it to use in the choice of the 
dependent variable transformation. The two cases that we will examine here are the standard 
dPI and dPn, known under the forms 

Z 

X" 
X"+I + x,-1 = -x, + - +a 

zxn + a  
X"+1 + x,-1 = - 1 - x ;  

respectively. Here z is linear in the independent variable n, i.e. z = an + ,9. For the needs 
of the present paper a schematic singularity structure will suffice (the precise balancing 
can be found in [6,8] and is not necessary here). In the case of dPI we have a singularity 
whenever the x, in the denominator happens to vanish. This has as a consequence that 
both and x , + ~  diverge, whereupon x,+3 vanishes again and x,+d is finite (i.e. the 
singularity is indeed confined). Thus the singularity pattern is (0, 00, CO, 0). In the case 
of dPn a singularity appears whenever x. in the denominator takes the value +l or -1. 
Thus we have two singularity patterns, which in this case turn out to be {-1, CO, +l) and 

How can we use this information in order to express x in terms of z-functions? Let us 
start with dP1. As will become clear in what follows there exists a relationship between the 
singularity patterns of a dP and the number of z-functions necessary for its description. Thus 
in the case of dPI, which has a unique singularity pattern, it is enough to introduce just one 
r-function. Since z-functions are entire, x must be a ratio of products of such functions. 
Hence, let us assume that x, contains a r-function F, in the numerator and that F, passes 
through zero. Since x,+~ and x.+2 are infinite, the denominator of x must contain F,-, and 
Fn-z (which ensures that F, appears in  the denominators of x,+l and xn+2 respectively). 
Finally since xn+3 vanishes, x, must contain Fn-3 at the numerator. Thus, the expression 
for x ,  dictated by the singularity pattern, is 

{+I, w, -1). 

(2.3) 

As we shall see in the following sections, this expression suffices for the multilinearization 
(more precisely, trilinearization) of dh.  That the choice (2.3) is a reasonable one can also be 
seen through the continuous limit of this expression. We know, for dP1, that the continuous 

FoFn-3 
X" = 

Fn-iFn-z' 
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limit is obtained through x = 1 + eZw at E + 0. Implementing this limit on (2.3) we 
find w = 28: log F,  a transformation that is at the base of the (continuous) Hirota bilinear 
formalism. 

In the case of dPlr we have two singularity patterns, and so we expect two r-functions 
to appear in the expression of x .  Let us start with the pattern [ - 1, CO, +l]. The diverging 
x may be related to a vanishing r-function, say F,  in the denominator. In order to 
ensure that x , - ~  and x ,+~  are respectively -1 and +1, we choose x. in the form: x, = 
- I  +(F,+I /F, )p  = 1 + (F,,-,/Fn)q, where p .  q must be expressed in terms of the second 
s-function G. We turn now to the second pattem (+l, 00, -1) related to the vanishing of 
the r-function G. We find, in this case, x,, = 1 + (G,+l/G,)r = -1 + (Gn:l/G&, where 
r ,  s are expressed in terms of F. Combining the two expressions in terms of F and G we 
find, with the appropriate choice of gauge, the following simple expression for x 

(2.4) 

which satisfies both singularity patterns. Thanks to this particular choice of gauge the 
relative sign is such that the continuous limit of (2.4), obtained through x = Q W ,  is 
w = a,log(F/G), i.e. precisely the expected transformation in the case of pn. Expressions 
(2.4) can be written in a way that recalls the bilinear formalism for continuous systems. The 
Huota D operator plays an important part here also. Starting with D, defined through its 
action on the dot-product Of. g = (8, - a,,)f(x)g(x'){,=d = f ' (x )g(x)  - f ( r )g ' (x ) ,  we 
introduce the shift operator eD. Its action on a dot-product is: eAD f ' g  = f ( x + h ) g ( x  -A) 
and thus Fn+,Gn-i can be obtained simply as eDF . G where eo operates on the discrete 
variable n. As we have shown in [14], where we have discussed in detail the integrability of 
trilinear equations, the bilinear D operators are the building blocks of the higher multilinear 
ones: one must just specify on which variables the operator acts. For example, the quantity 
Fn+~Gn-2Hn-1 can be simply written as e2D12+D13F. G . H. 

3. Bilinear expressions for dPlI and related equations 

We start our systematic construction of bilinear expressions for dPS with the second discrete 
Painlevt equation. As explained in the previous chapter, two r-functions are needed here, 
related to the nonlinear variable through (2.4) and thus we expect dPn to be given as a 
system of two bilinear relations. Equation (2.4) does indeed provide the first equation of 
the system. By eliminating the denominator F,G, we obtain 

Fn+1Gn-i + Fn-iGn+l - 2FnGn = 0.  (3.1) 

In order to obtain the secondequation werewritede,I: (x ,+ I+x , - , ) (~ -x , ) (~+x, )  = zx,+a. 
We use the two possible definitions of x, in terms of F,  G in order to simplify the expressions 
1 - x, and 1 + r,. Next, we obtain two equations by using these two definitions for x,+l 
combined with the alternate definition for x.-,. We thus obtain 

(3.W 
(3.2b) 

Finally, we add equation (322) multiplied by Gn+2 and (3.2b) multiplied by Fn+2. Up to 
the use of the upshift of (3.1), a factor F.+IG,+~ appears in both sides of the resulting 
expression. After simplification, the remaining equation is indeed bilinear: 

(3.3) 

Fn+zFn-iGn-i - Fn-zFn+iGn+i = F,$n(zxn +a)  

Gn-zGn+iFn+i - Gn+zGn-iF~-i = G:Fn(zxn +a). 

Fn+zG,-z - Fn-2Gn+z =~z(Fn+lGn-~ - ~ F ~ - I G , + I )  + h F n G n  
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where a symmetric expression was used for x in the right-hand side, obtained as the 
arithmetic mean of the two right-hand sides of (2.4). Equations (3.1) and (3.3). taken 
together, are the bilinear form of d b .  

The calculation we just presented for d h  can be easily extended to the dPn1 equation 
we presented in [15]. We have shown there that the system: 

ZY" + c 
Xn+l + x, = - b2 - y,Z 

ix, +d 
Y" + Yn-1 = - a2 -xi 

(3.4~) 

(3.46) 

(where i is a half-downshifted z, i.e. i = z - u/2) goes over to the standard form of 
at the continuous limit. Equation (3.4) came about as an off-shoot of dPD. Indeed the 

singularity confinement criterion for an equation of the form (2.2) leads to 

zx,, + a  + S(-l)" 
1 - 9  &+I +&-I = (3.5) 

The S(-I)" can be absorbed in a proper redefinition of even and odd x ' s  leading finally to 
the system (3.4). Thus, when the even-odd dependence is present, we have a dPm, while, 
when we suppress it (and this can be considered as a particular type of coalescence, typical 
of the discrete setting) we obtain dPrI. The bilinear expression for (3.4) can be worked out 
along the same lines as for (2.2). Four 7-functions are needed here, related to x and y 
through 

Thus, the first two bilinear equations for dPm are: 

H ~ K ~ - I + H ~ - I K , = Z U F , , G ,  
F ~ + I G ~  + F,G,+I = 2bH.K.. 

(3.6~) 

(3.66) 

(3.7~) 
(3.7b) 

Repeating the calculation along the very same limes as for dPn we obtain finally the two 
supplementary equations: 

H-+IK- I  - K - I G + I  =dz(F,+lG, - F&,+I) +2cHnKn) (3.8~) 
Fn+jGn-l - Fn-lGn+l =~b(.?(H,Kn-I - H,-lKn) +2dFnGn) (3.8b) 

which, together with (3.7a, b), complete the bilinear expression of dPm, equation (3.4). 
Another interesting equation, in the family of dPn, is equation dPgq that plays the role 

of the 'modified' dpn. The (awkward) name dP34 is chosen by analogy to the continuous 
case where equation (34) in the Painleve-Gambier classification is related to Pn through a 
simple Miura transformation. In [16] we have given the form of dP34: 

(3.9) 

What is the singularity strncture of dP34? An analysis of (3.9) yields the following pattern: 
if yn is equal to - Q 2  then yn+l diverges, yn+z = -yn+l and finally yn+3 = -in+3/2, 
whereupon yn+4 tuns out to be finite. Thus the singularity pattern for the variable y + i / 2  
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is {O, CO, CO, 0} just as in the case of d h  and, so, we expect the expression of y in terms of 
r-functions to be just 

(3.10) 

The multilinear expression for dP34 can be found on the basis of this transformation. It turns 
out that the resulting equation is a hexalinear one that cannot be reduced further, unless 
subsidiary dependent variables are introduced. However, there exists a simpler expresssion 
for this multilinear equation. The stating point is the discrete Miura [ 171 that relates dP3+ 
to dPII: 

yn = -212 + (X" + 1)(1 - x 4 .  (3.11) 

Expressing x in terms of the r-functions F and G we find 

(3.12) 

i.e. (3.10) leads to (3.12) provided we take r, = Gnt2. The existence of the Miura makes 
the bilinear expression of dP34 straightforward. In fact it is exactly the same as the one 
for dPu, i.e. (3.1) and (3.3). . The only difference lies in the definition of the nonlinear 
function which in the case of dPII is given by (2.4) while for dP34 it is just (3.10). In fact, 
the hexalinear equation for dP34 can be obtained starting from (3.1), (3.3) and eliminating 
F .  This construction has also the advantage of relating the parameter m of d P 3  to that of 
dPn through m2 = (U + a/7J2. 

As we pointed out in the introduction the bilinear formalism provides the natural 
framework for the derivation of the auto-BacHund transforms for the dPS. We shall illustrate 
this point in  the case of dPII. We have seen above that, starting from dPn with r-functions 
F and G, we can obtain, from the compatibility of (3.1)-(3.3), a dP34 on G alone with 
parameter m2 = (a + ~ / 2 ) ~ .  The important point here is that at the level of d P 3  only m2 
is fixed. We can thus change the sign of m without changing the equation dP34. The fact 
that G satisfies dP34 means precisely that the two equations (3.1) and (3.3) are compatible 
with a such m = a + aj2. But then two equations of the same form as (3.1), (3.3) with 
the very same G but with F replaced by some other r-function H and a replaced by b will 
also be compatible provided that --m = b + a/2. This corresponds to'd% for the ordered 
pair (H, G) with parameter b = -m - a/Z or, by inspection of the symmetry properties 
of (3.1)-(3.3) upon interchanging H and G, to a dPn for the ordered pair (G, H) with 
parameter a' = -b = m + u/Z = a + a. Thus starting from ( F ,  G) with parameter a we 
can constmct a pair (G, H) with parameter a +a.  this is precisely the autoBacklund of 
dPI1. The details of the construction of the function H can be found in [IS]. We give here 
just the result of this calculation: 

HnFntI = G , ~ I G , ( ~ + ~ + ~ ~ - - G ~ + z G , - I  (3.13~) 

HntIFn = GntIGn(z - 0 )  -2GntzGn-I (3.13b) 

or combining (3.13~. b): 

HnFntI - ( 2 ~  + a)Gnt1Gn. (3.14) 

Thus starting from a given ( F ,  G) at parameter a we can construct H ((3.13~) suffices), 
and iterating further (also backwards) we obtain the solution at any a+na, with n a relative 
integer. 
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The method used above for the construction of the auto-Bbklund is quite general indeed. 
The important ingredient is that the bilinear equation for a given dP is, in fact, linear in 
each of the s-functions. Thus we can eliminate one of them systematically and obtain a 
compatibility condition for the other r-function. The resulting equation can be in general 
multilinear but the important point is that it depends on the parameter of the initial d P  in 
a way that is invariant under some discrete transformations (in this case m -e -m). It is 
precisely the use of this discrete symmetry that allows us to establish the auto-Backlund 
transform as we have seen in the case of dPU. 

4. Multilinear expressions for the various dPIs 

An interesting property of the discrete Painlevd equations is that they possess several 
alternate forms, i.e. there exist more fhan one discrete systems (presumably integrable) 
which, at the continuous limit, go over to the same continuous PainlevB equation. This is 
all the more true for dP1. 

In this section we will present the multilinearization of some of them, limiting ourselves 
to the simplest cases. Let us start with the 'standard' dQ given by 

X,+I + X" + x,-I = zn/xfi + a .  (4.1) 
As we have seen in section 2 , the proper dependent variable transform, dictated by the 
singularity patterns of dP1, {O, 00, o o , O ] ,  is 

Instead of substituting into (4.1) we use the discrete derivative of the latter: 

xn+2 - Xn-1 = Z"+l/X"+l - znlx. 
By reducing to a common denominator we obtain the following trilinear form: 

Fn+sFn-iFn-z - Fn-jFn+lFn+z =~n+lF:+iFn-~ -znF:-iFn+z (4.3) 
that cannot be reduced further. So the standard dPr does not possess a bilinear form but 
rather a trilinear one. 

Another simple form of dPI is given by [12] 

x.+1+ X,-l = ZJX, +a.  (4.4) 
Here, the singularity pattern is (0, 00, a,  o0 ,O) .  This pattern suggests the transformation: 

(4.5) 

Substituting back into (4.4) we obtain readily 

Fn+3Fn-lFn-z - F"-3Fn+lFn+Z =znFntiFnFn-~ +aFntzFnFn-~ (4.6) 
again a trilinear form. 

Another form of dPI is known [16]: 

x,+l +x,-l = z, , /x,  +a/x,2 (4.7) 
with singularity pattern (0, co,O}.  Moreover, when one examines the structure of the 
singulatities more closely we find that they behave as E ,  1/cZ. E for E --f 0. This, in 
turn, leads to 
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and upon substitution we obtain still another new trilinear expression: 

F~+~F;- ,  - F~-~F;+, =z,F,,+,F,F.-, +uF:. (4.9) 
The last form of dPI we shall treat here is not as well known as the other ones. It can 

be obtained [19] as a particular limit of dPm (5.1) and reads 

(4.10) 

where, contrary to all the previous cases, here zn is not an affine function of R ,  but rather 

The singularity pattern of this equation is {O, CO, 0) as in the case of (4.7) and thus the same 
transformation (4.8) should be used here. But here a full F2 factor drops out and we obtain 

F,+zFn-z =znF,+~F,-i +hF,Z. (4.1 1) 

2 
X*+IXn-l = z n l x n  +alx,. 

zn = zoi". (More precisely, the singularity confinement condition is just Z.+~Z,-~ = z,.) 2 

Thus the dPI (4.10) has a bilinear expression. 

5. The third discrete Painlev6 transcendent 

The third discrete Painlev€ transcendent occupies a unique position: it is, in fact, the only 
equation among the 'standard' dPS whose form was obtained by singularity confinement 
[ 1 I] prior to the obtention of its Lax pair [20] (since the Lax pair for the two remaining 
dPS, namely the fourth and fifth, are still unknown). The form of dPnI we are going to work 
with in what follows is 

where a,  b are constants and c, d of the form c =coh", d = doh". Two singularity patterns 
exist for (5.1). Either x, first takes the value a, in which case we have {a, CO, b ]  and the 
singularity is confined, or we start with b: {b,  00, U ) .  This suggests the introduction of two 
r-functions F ,  G in the form 

The first bilinear equation is readily obtained from (5.2): 

aF,,+lG,-1 - bFn-lG,+I +(a - b)F,G, = 0. (5.3) 
In order to obtain the second equation, we substitute back into (5.1) using the two different 
definitions for x in xn+l and We thus obtain 

W K + I G , + I  + Fn+zG&K-iG.-i + Fn-zGd = F;G:(x - C ) ( X  -4. (5.4) 
Expanding the right-hand side, we remark that a term ab Fn-1 G,-I Fn+l G,+I appears that 
cancels the one on the left-hand side, whereupon one can simplify by G, and obtain 

(5.5) 
I 

F"+ZF~-IG~-I  + Fn-zFn+IGn+I + Fn+zFn-zGn = -Fn@ 
ab 

where 

@ = (U - c)(b - d)F.G, + b(a - c)F.-IG~+I + a(b - d)Fn+iGn-l. (5.6) 
Using the alternate definition for x in X,+I and xn-1 we obtain an equation similar to (5.5) 
with F c> G but the same @: 

(5.7) 
1 

ab G , + Z F ~ - I G ~ - I  + Gn-zFn+~Gtr+~ + Gn+zGn-zFn = -Grc@. 
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Finally, we multiply (5.5) by Gn+2, (5.7) by F.+z and subtract, we use (5.3) in order to 
simplify the result and obtain 

with @ given by equation (5.6). Thus dPm indeed possesses a bilinear form. 

6. Bilinear expressions for dPlV and dw 

In order to study the fourth discrete Painlev6 equation, we use its symmetric form introduced 
in 1211: 

Two singularity patterns are easily obtainable: x,-l goes through one root of the 
denominator, x, diverges and x.+1 goes through the other root, whereupon the singularity 
becomes confined. Thus we have two patterns {-z,-1 - y ,  M, -zn+l + y )  and (-zn-1 + 
y. 00, -Z,+I - y ] .  This suggests the ansatz: 

However, another 'potential' singularity exists for this equation. If x. = &(or f p )  then 
either or x,+l must be the opposite of x.. But, upon closer study, this does not lead 
to a singularity. The precise pattern is (+(U zk p ) ,  ~ ( a  f p ) ) ,  i.e. perfectly regular. Still 
this 'potential' singularity can be put to profit in order to introduce auxiliary r-functions 
that will make possible the bilinearization of d h .  We thus introduce 

(6.3~)  

(6.36) 

Notice that there exists some asymmetry in the relations (6.3). To preserve the symmetry, 
we should have introduced a lattice shifted by a half-unit writing Hn+1&-1p instead of 
H,K,- , ,  but this 'half-lattice' notation would have been awkward in the long run. 

Equations (6.2) and (6.3) provide five equations for the six r-functions so only one 
remains to be obtained. Substituting in (6.1) we obtain 

(&-I F~+I  G ~ + I  + Ka+lFnGn)(HnFn-IGn-1 + Hn-zFnGn) 
= H,-IK,+~(X,+~~Y-B)F~G.(~~ -cr+B)FnGn (6.4a) 

and with the other choice for x.: 

( K - I F ~ + I G ~ + I  + H ~ + I F G ~ ( K ~ F ~ - I G ~ - I  + Kn-zFnGn) 
= %+I Kn-l(~n +U - B)FnGx(xn - LY + p )  FnG,. (6.4b) 

Taking the difference of (6 .4~)  and (6.4b) we obtain an expression which can be simplified 
through the use of (6.3~). A factor F,G. drops out and we find 
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From (6.2) we express the right-hand side in terms of F, and G ,  only and we remark that 
a further factor F,G, drops out. Finally we find a bilinear equation: 

K ~ + I H ~ - z - H ~ + I K ~ - z  = ~ ( o ~ + B ) ( ( B - o ~ + Y - z ) F " + I G , - I  + ( ~ - B - Y  - z )  

x F " - I G . + I + ( o ~ - B - Y - z ) ( B - o ~ + Y  - z ) F n G d  (6.6) 
where z stands for zn ,  or by symmetrizing further the right-hand side: 

~ ~ + I ~ ~ - ~ ~ H ~ + ~ K ~ - Z ~ ~ ( O ~ + ~ ) ( ( ~ ~ + Z ~ - ~ ~ - O ~ ~ ~ ) F , G , - Z  
x(Fn+1Gn-1 + F ~ - I G ~ + I ) )  (6.7) 

which completes the bilinearization of dPlV. 
At this point we can remark that only four of the six s-functions have been used in the 

final equation (6.7). This suggests two possibilities. The first is to drop the two equations 
(6.3b), containing M and N ,  and have thus a system of four bilinear equations for dPlV. 
The second is to use M and N in order to make (6.7) more symmetric. This can be done 
by dividing (6.7) by 01 + ,3 and subtracting the equation obtained by replacing H by M ,  K 
by N and changing the sign of p,  resulting in 

In order to bilinearize dPv we will start from the form 

where p .  = poh", qa = qoh", and U ,  U are constants. The more traditional form of 
dPv, found in [ l l ] ,  can be obtained from (6.9) by taking yn = ;(x* + 1) whereupon, after 
some manipulations, one gets an equation the left-hand side of which is (2y, - l)y,+ly,-~ - 
yn(yn+1 + y n - ] ) .  The singularity patterns of (6.9) are easily obtained. Two genuinely singular 
sequences exist: {pn-l ,  00, qn+l} and [qn-l, CO, pn+1). Moreover, a potential singularity 
exists when x, takes a value that cancels the right-hand side of (6.9). Then, either x.+~ or 
x.-l must be the inverse of x,. This does not lead, however, to a singularity and the four 
patterns are: {U, l/u), {l/u, U), {U, l /v ) ,  ( l /u ,  U). These singularity patterns suggest the 
introduction of six s-functions in the following way: 

(6.10) 

(6.11) 

As in the case of dPw, the asymmetry in the definitions of H, K, M and N could be 
removed through the introduction of a 'half-lattice' notation. Equations (6.10) and (6.11) 
provide five relations between the six r-functions and so one more remains to be obtained. 
We shall not here go into the details of this calculation. It follows closely our derivation 
for dPly. So we only give below the find expression, similar to (6.8), that reads: 

(6.12) 

This completes the bilinearization of dPv. In conhast to the case of dPw, we were not able 
to find a bilinearization in terms of four r-functions only, similar to (6.7). 
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7. Discussion and outlook 

A natural question that comes to the mind when one sees the results we have presented 
in the previous sections is ‘Where is dPw?’. It is a fact that we have not yet obtained the 
discrete analogue of p\.? either in nonlinear or bilinear form. As far as the latter is concerned 
let us point out that the bilinear form of PVI has not yet been obtained in the continuous case 
either. In fact, the whole approach of Kruskal and Hietarinta [4] was based on the existence 
for pm, PV of independent variable transformations that made it possible to absorb the terms 
depending linearly on the first derivative of the dependent variable. Such a transformation is 
not known for P V ~  and this has been a stumbling block for its bilinearization. In the discrete 
case the situation is even worse. While one can show that the autonomous form of dPVl 
coincides with the general symmetric Quispel mapping, no brute-force deautonomization 
can be performed the bulk of the calculations is prohibitive. There also exists another 
indication that d b 1  may be more complicated than we initially thought. In [22] we have 
obtained just four consistent quantization schemes corresponding to the families of dPI/n, 
dP111, dPlV and dPV. This means that not all dPS or, if we limit ourselves to the autonomous 
case, not all Quispel mappings, can be quantized. Thus if dPVr was given simply by a 
deautonomization of the autonomous form we have obtained it would not be quantizable. 
This is not a serious argument, of course, but allows us to indulge in some speculation. As 
we have shown in [15], while dpm has a ‘standard‘, symmetric form, there also exists an 
asymmetric form of dPnr that can be written as a system of two mappings belonging to the 
dPI[ family. This is possible because of the extra freedom we often encounter in the discrete 
case where some coefficients have an even-odd dependence. Although the asymmetric form 
of dPV has not yet been worked out, it may turn out that this technique works for dPV and 
also for dp\.?. In this case the latter would have the form of two coupled 2-point mappings 
of the dPV family. Still, we must admit that this is just speculation and no tangible results 
exist to date. 

Another important question concerns the alternate dPS. As is well known by now, 
discrete P’s exist in several,forms. For example, in section 3, we have presented four 
different forms of dPI and many more exist [19]. The classification problem of the dPS 
is completely open and the profusion of alternate forms makes it particularly interesting. 
We hope that the bilinear formalism will provide a useful tool for the investigation of this 
problem. 
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